EPFL- Spring 2025 Differential Geometry HT: G. Moschidis
SOLUTIONS: Series 11 Riemannian Geometry 7 May 2025

11.1 Let (M, g) be a smooth Riemannian manifold.

(a) For any smooth function f : M — R, we will define the Hessian Hess[f]| to be the
(0,2)-tensor
Hess[f] = Vdf.

Show that, in any local coordinate system,
HCSS[fL’j = @Z-@jf - Ffj@kf

Deduce that Hess(f) is a symmetric tensor. Show also that, for any p € M and X € T, M,

d2
(fo v(t))‘ ,  where ~ is the geodesic (t) = exp,(tX).

Hess[f](X,X):@ -

(b) For f: M — R, let ¢ € R be such that S = f~!({c}) is a smooth hypersurface of M and
df # 0 on S. Show that the scalar second fundamental form b(-,-) of S with respect to
the coorientation determined by gradf = df* is given by

_ Hess[f](X,Y)

P ) = gradf]

for all X, Y € I'(M, S).

Solution. (a) Recall that, in any local coordinate system, the covariant derivative of an 1-form w
can be expressed in terms of the Christoffel symbols by the relation

(Vl-w)j = &wj — Ffjwk
Therefore, for w = df, we have:
Hess[fli = (Vidf); = 0i(df); — T (df )i = 0:0;f — T04f. (1)

The above expression is symmetric in ¢ and j, since 0;0;f = 0;0;f (f being a smooth func-
tion) and T}, = T'% (since the Levi-Civita connection is torsion-free). Therefore, Hess[f|(X,Y) =
Hess[f](Y, X) for any X, Y € T'(M).

Let p € M and 7(t) = exp,(tX) (so that y(0) = p, ¥(0) = X). Then, in any local coordinate
system around p, we calculate using the formula for the derivative of the composition of functions:

0000 = 50500 0)

| CUC0)) RER ORI CIO)
= 9D H)P (0 + 0 (1(8) - (1),

Since v is a geodesic, it satisfies 5°(t) = —I'%|,)7*(t)3'(¢). Substituting this for the last term in the
above relation, we obtain

L)) = A0, FGONP 1) T O OAF (1),
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Renamiing the summed indices in the second summand (so that (i, k,1) — (k,1,7)), we infer in view
of the formula (1):

L (160)) = (A0,£60) = Th Lo F G 0)) (057 (1) = Hessl o (0. 5(0).

Evaluating the above expression at t = 0, we infer the desired formula.

L (r6m)

= Hess[f](X, X).

t=0
(b) For any point p € S and any X € T, M, we have:
(gradf, X) = (df*, X) = gi;(df*)' X7 = ;9™ 0k f X7 = 670k f X7 = 0, f X7 = X(f).

Therefore, if X is tangent to S = f~'({c}), which is equivalent to the statement that X(f) = 0, we
must have (gradf, X) = 0; in particular, gradf|, L 7,S.
Assuming that df # 0 on S (and, hence, gradf|s # 0), let us set 7 to be the unit normal to S in
the direction of gradf|g, namely
grad f

lgrad f||°
For any p € S and X,Y € I'(M, S), we have:

n =

b(X,Y) = —(Vxn,Y).

Therefore, we can calculate:

b(X,Y) = —(Vx( grad/ ).Y)

lgrad f]]
B V xgradf 1
-~ Tgradr + graary) &2 )
1 1
= ~Taradg] V&) = X () (erad £ ).

The second term above vanishes (since gradf L T,,5); for the first term, we will use the fact that V
commutes with the operator f (since Vg = 0), together with the trivial identity (w* XY) = w(Y) to
compute

(Vxgradf,Y) = (Vx(df*),Y) = (Vxdf)!,Y) = Vxdf (Y) = Hess[f](X,Y)

(if you do not feel comfortable with manipulating the # operator, you can perform the above cal-
culation directly in local coordinates). Therefore, returning to the previous computation, we infer
that

Hess[f)(X,Y)

P Y) = gradg]

Page 2



EPFL- Spring 2025 Differential Geometry HT: G. Moschidis
SOLUTIONS: Series 11 Riemannian Geometry 7 May 2025

11.2 Let (M, g) be a smooth Riemannian manifold.

(a) The Einstein tensor G of (M, g) is the (0, 2)-tensor defined by
, 1
G = Ric — =94,
2
where S is the scalar curvature of g. Show that G is divergence free, i.e.
g“bVaGbc = 0.

(Hint: You might want to use the second Bianchi identity.) Deduce that if (M, g) satisfies

Ric = Ag

for some smooth function A : M — R and dimM > 3, then A = const on each connected
component of M (Hint: Show first that, in this case, G = N'g for some different function
A’). A Riemannian manifold satisfying such a relation is called an Einstein manifold.

(b) Show that if (M, g) is a connected Einstein manifold of dimension dim M = 3, then
(M, g) has constant sectional curvature. (Hint: Ezercise 9.1.c might be helpful.)

Remark. According to the theory of general relativity, a vacuum region of our spacetime
(i.e. where matter is absent) is modelled by a Lorentzian manifold (M, g) satisfying G = Ag,
where A is known as the cosmological constant. The above results indicate that non-trivial
vacuum spacetimes exist only when dimM > 4.

Solution. (a) Recall that the Ricci tensor is defined in terms of the Riemann curvature tensor by
Ricy; = gabRaibj-

Note that the above relation is of the form Ric = trtr(¢~! ® R) (where tr denotes an appropriate
contraction). Thus, in view of the facts that Vg = 0 and V commutes with contractions, we calculate
that VRic satisfies

g"'ViRicy; = " ¢""V i Raiv;- (2)

Remark. Note that, in the above relation, ViRic;; denotes (Vg ric)(0;, 0;) and similarly Vi Ry =
(Vo R)(0q, 05, 0p,0;). Tt is an easy exercise to verify (using the formula for the coordinate expression
of a covariant derivative of a tensor) that ViR, satisfies the same symmetries with respect to the
indices (a,,b,7) as Raip;-

Using the 2" Bianchi identity

ViRaivi + VjRuiky + VeRaijr = 0
to substitute the term on the right hand side of (2), we obtain:

gkikaiCij = _gkigabijaikb - gkigabvaaijk- (3)
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Using the summetries of the Riemann curvature tensor (see also the remark above) and the fact that
V commutes with contractions and with g, we compute the first terms in the right hand side above

—¢" 9"V Roiry = 9" 9"V j Raivk = V(9 9" Raitis) = V ;5.

Similarly, using the symmetries of R we compute that the second term in the right hand side of (3)
satisfies
—g" gV Ruiji = — 9" 9" Vy Riar; = 6"V Ric,;
where, in the last equality, we used the identity (2) with (b,i,a, k) in place of (k,a,,b). Therefore,
returning to (3), we have
gkikaiCij = 8]S — gbavaiCaj.

Note that (after relabelling the summing indices) the last term in the right hand side above is the
same as in the left hand side, so ‘
zngVkRiCij = V]S

Using the trivial identity ‘ .
V;S = Vi(g"9:55) = 9" Vi(9i5),

we thus obtain the required relation
9"V, (2Ric;; — Sgi;) = 0. (4)
Suppose that (M, g) satisfies
Ric = Ag.

Then, we calculate that
S = g®Ricy, = Ag™gar = nA,

where n = dimM. Thus, substituting Ric and S in (4), we obtain

; . 1 i 7
0 = ¢"Vi(Ric;; — 5591'1') = ¢"Vi(Agyj — gAgij) = (1- g)gk 9i; Vi

Thus, if n > 2, we infer that 9;A = 0, i.e. A is locally constant on M.

(b) In the case when dimM = 3, we know from Exercise 9.1.c that the full Riemann tensor can
be expressed in terms of the Ricci tensor:

. . . . 1
Rijkl = Ricyy, g1 — Ricy ik + Rlel gik — Rlek git — §S(gikgjl - gjkgil)-

Since we assumed that Ric = Ag for some constant A (and, hence, S = g?Ricy, = 3A), we deduce
after substituting above:

3
Rijkl = Agir 951 — Aga 9k + Agjl ik — Agjk git — §A<gikgjl - gjkgil)
1
= §A(gik9jl - gjkgil)-

Therefore, g has constant sectional curvature equal to %A.
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11.3 Let (M, g) be a smooth Riemannian manifold.

(a) A 2-dimensional surface S C M is called ruled if, for every p € M, there exists a curve
v (=9,0) = M with v(0) = p, ¥(0) # 0 which is a geodesic of (M, g) and lies entirely
inside S. Show that, in this case,

K, < K[T,,S] forall pe S,

where K, is the sectional curvature of S with respect to the induced metric g, while K[T},5]
is the sectional curvature of the plane 7,5 C T, M with respect to the ambient metric g.
This is known as Synge’s inequality.

(b) Let ¢ be a point in M and let Q@ C T, M be a convex open neighborhood of 0 such that
exp, is a diffeomorphism when restricted on §2. Let S C M be the surface defined by
S = exp,(2NV), where V is a 2-dimensional subspace of T, M. Show that S is a ruled
surface. Moreover, show that at the point ¢:

K, = K[T,8).

Solution. (a) Let B(:,-) be the second fundamental form of S C M. As we have shown in class, if
v :[a,b] — S is a geodesic in S (i.e. satisfies V4 = 0), its acceleration in M satisfies

Vv =BV, 7).

If S is a ruled surface, then, for every p € S, there exists a geodesic v of M passing through p which
lies entirely in S (hence it is also a geodesic of S, since Vi4 = 7' (V%) = 0; thus, there exists a
v € T,S (with v = ) such that

B(v,v) = 0.

Let us choose for every point p € S an orthonormal frame {e;, e5} for 7),S such that e; = v. Using the
Gauss equation, we showed in class that, for the 2-plane II = T,,S C T, M, the sectional curvatures
of (M, g) and (S, g) at p are related by

= (Bley,e1), Blea, €2)) — || Bley, e2)|)?
oD+ er]?[lez(]* — (e, e2)? '

Since {eq, e} is orthonormal and B(eq, e;) = 0, we infer that
K, = K,(I1) — || B(ex, e2)[|* < Kp(ID).

(b) Let S = exp,(V N Q). Since exp, : Q C T,M — U = exp,(2) C M is a diffeomorphism, S is
a smooth 2-dimensional surface in M; the map ® = exp, |ynq : VN Q — S then defines a smooth
parametrization of S (and ®~! defines a coordinate chart, once we identify V with R?). Every p € S
is of the form p = exp,(v) for some v € V' N Q; in this case, the curve ¢[0,1] — ~(t) = exp,(tv) is
a geodesic of M that lies entirely in S and passes through p (since Q was assumed to be a convex
neighborhood of 0, £-v € QN V for ¢ € [0,1] and, thus, exp,(tv) € exp,(V N§) = S for all ¢ € [0, 1]).
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Therefore, S is a ruled surface. Moreover, at the point ¢, every direction v € T, = V is a direction
through which passes a geodesic of M lying entirely in S. To see this, note that, since () is an open
neighborhood of 0 € T, M, for any v € V there exists a A, > 0 such that \,v € Q2 NV} in this case,
the curve ¢t € [0, \,] — 7(t) = exp,(tv) is a geodesic of M that lies entirely in S = exp,(V N Q) and
satisfies 7(0) = ¢, ¥(0) = v. Therefore, as we explained in the previous part of this exersice, the
second fundamental form B(-,-) of S satisfies at ¢:

B(v,v) =0 forallveT,S=V.
Since B(-,-) is symmetric and bilinear, this implies that
B(v,w) =0 forallv,weT,S=V.
Thus, if {e1, e2} is a basis for 7,5 =V, we have

_ (3(61761),3(62762» - HB(€1,€2)H2
K, = KT, = Ky(1,5).
o = Kol ToS) 4 = Pl — en, ea)? o145)

11.4 (a) Let S C (R? ggr) be a smooth surface which is contained inside the ball
Br={zeR*: |z|| < R}

and such that there exists a point z € S with z € dBpg (i.e. ||z|]| = R). Deduce that S and
Sr = 0Bpr have the same tangent plane at z. Show that the sectional curvature K of S

satisfies at the point z
1

ﬁ.

Hint: It might be useful to compare the sectional curvatures of S and Sgr at z by expressing
both surfaces locally as graphs of functions defined over their common tangent plane T,S
and use Erercise 9.1.

K, >

(*b) A surface S C R? is called minimal if it has vanishing mean curvature H (such a surface
is a stationary point of the total surface functional A[S] = [, dg, hence the name). Show
that a minimal surface satisfies K’ < 0. Deduce that there is no compact minimal surface
in R3. (Hint: For a compact minimal surface S, start from a sphere completely surrounding
S and decrease its radius until you end up with a sphere both containing S and touching
S at a point z.)

Solution. (a) Let us consider the polar coordinate system (7,0, ¢) on R* and let us assume, without
loss of generality, that the point z does not lie in a region where (7,6, ¢) does not degenerate (i.e. at
0 = 0,7); we can always achieve that by rotating, if necessary, the coordinate system. In this case,
the tangent plane T,Sg of the sphere Sg = {r = R} at the point z is spanned by the coordinate
vector fields Jp|., 0p|.. In order to show that 7.5 = T.Sg, it suffices to show that, for any curve
t — ~(t) inside S with v(0) = 2, 4(0) € span{dy|,, 04|.}, i.e. that

PO =0 @ O], =0
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Since S C {r < R} and z € {r = R}, we infer that, for any curve v in S as above, we have r(y(t)) < R
for all ¢ and 7(y(0)) = R; therefore, £r(v(t))|;—o = 0. Thus, we have shown that 7.5 = T.Sx.
Let us consider a Cartesian coordinate system (x', 2% z®) on R® such that z lies at the center

(0,0,0), the 2-plane T,S = T,Sg is the coordinate plane {z®> = 0} (hence spanned by 9|, 3|.)
and the vector 0s|, points in the direction of 0,. Since the surfaces S and Sg are smooth and
03 is transversal to 71,5, T,Sgr at z, it will also be transversal to to 1,5, T,Sr for p € S and
q € Sg close enough to z. Therefore, we can express both surfaces as graphs of functions over
the (x!',2?) coordinate plane in a small neighborhood around z, i.e. there exist smooth functions
F,Fr : B5;(0) C R* — R (for some § > 0 small enough) and open neighborhoods U« C S, V C Sg of
z, such that:

SnU = {z* = F(z',2%), (a',2%) € Bs(0)}, SpnNV = {a®= Fr(a',2?), (z',2°) € B5(0)}.
Note that since z = (0,0, 0) belongs to both surfaces, we have
F(0,0) = 0 = Fg(0,0).
Moreover, since the plane {z3 = 0} is tangent to S, Sk at z, we also have
8,F(0,0) = 0 = 8,Fp(0,0), i=1,2.

Finally, note that, since S lies in the interior of the ball Sg and the coordinate vector 0s|, points in
the direction of J,, the functions F' and Fpg satisfy:

F(z',2%) < Fr(xy,23) <0

(note that Fr(xy,72) < 0 because the ball Sy lies on one side of the hyperplane T.Sy = {2® = 0},
namely in the half space {z? < 0} ). The above conditions imply that the 2 x 2 symmetric matrices
[0;0;F](0,0) and [0,0;FRr](0,0) satisfy

9:0,F)(0,0) < [:0;F](0,0) < 0 (5)

(recall that two symmetric n x n matrices A, B satisfy A < B if 27 Az < 27 Bx for any vector ).
Note also that

Using the last relation established in the solution of Exercise 9.1, we can compute the Riemann
curvature tensors of S and Sg (equipped with the corresponding induced metrics g and gr) in the
(x!, 2?) coordinate systems by the formulas

DR F - 0;00F — 0,0F - 0,0, F

(Fg )i 1+ |dF|?

and
0,0k FR - 0;0,Fr — 0;0,Fg - 0;01Fr

R;3.)ii
( HR) Jkl 1+ |dFR|2
Therefore, using the formula defining the sectional curvature, we can evaluate at (z',z%) = (0,0)

(Where dF = dFR = 0 and gij|(0,0) = (gR)ij|(0,0) = 61']'1
Kg|z = det ([&@F](O, 0)), K§R|z = det ([&@FR](O, 0))
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In view of the relation (5) between the matrices [0;0;F](0,0) and [0;0;Fg](0,0), we infer that

Kil: 2 Kggl-.
Since (Sg, gr) is the round sphere of radius R, we have Kj,|, = %, hence

ale = izh

(b) Let p be any point on S C R* and {ey, e2} be an orthonormal base of T,S. Let b be the scalar
second fundamental form of S (with respect to a fixed unit normal n to S) and let us define the

symmetric 2 X 2 matrix
B — b(el, 61) b(el, 62)
b(ea,e1) bleg,e2) )’
The sectional curvature K|, of S equipped with the induced metric satisfies (in view of the Gauss
equation and the fact that the Riemann curvature tensor of (R?, g5) vanishes identically)

K1, = ber, e1)b(es, e2) — (b(en, 62))2 = det B,
while the mean curvature H|, was defined so that
H|, = b(ey,e1) + b(ea, e2) = trB.

Notice that B is diagonalizable with real eigenvalues (since it is symmetric), so if Aj, Ay € R are its
eigenvalues, we have trB = A\; + Ay, det B = A1 \y. From this it readily follows that if trB = 0, then
det B < 0. In particular, if S is a minimal surface, then K|, < 0 for all p € S.

We will show that there is no compact minimal surface in R? by contradiction: Assume that such
a minimal surface S existed. Since S is compact it is also bounded. Let

R =min{p>0: 5 C B,(0)},

that is to say, Br(0) is a closed ball of minmal radius which contains S entirely. Let us set S =
0Bgr(0) = {r = R}. Note that there exists a point z € Sk such that z € S: If this is not the case,
ie. if SN Sk = 0, then, due to the compactness of S, we must have maxgr < R; in this case, there
would exist a 6 > 0 such that S C {r < R— 4}, thus violating the assumption that R is the minimal
value with this property. From part (a) of this exercise, it would then follow that

1

K|Z>ﬁ7

which contradicts the fact that K < 0 everywhere on a minimal surface.

*11.5 Let v:[0,1] = M be a geodesic of (M, g). Assume that there exist points 0 < a < b < 1 and
a vector field Z along v with Z | + satisfying the Jacobi equation

ViViZ — R(Y,2)7 =0
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and such that
Z(a)=7Z(b)=0

with Z not identically 0 on [a,b]. Show that 7 cannot be length minimizing among all curves
connecting v(0) to v(1). (Hint: You have to construct a variation ¢s of ¢pg = v fizing the
endpoints of v such that j—;(ﬁ(gbs))lszo < 0.To this end, consider first the variation determined
by a variation vector field which is equal to Z in [a,b] and 0 otherwise, and then consider small
perturbations of this vector field around t = a,b .)

Solution. First of all, since Z is not identically 0 along 7, we must have V;Z(a) # 0 and V4 Z(b) # 0
(this can be seen via a contradiction argument: If V,Z(a) = 0, then Z would satisfy the same initial
coditions at t = a as the zero vector field; since the Jacobi equation is a linear second order ODE,
the uniqueness property of solutions to the corresponding initial value problem at ¢ = 1 would imply
that Z = 0, which is a contradiction; similarly at ¢ = b). Therefore, for § > 0 sufficiently small (to be
determined more precisely later), we have Z(a+ ) # 0 and Z(b—0) # 0. Let us define the following
auxiliary unit vector field E on 7|{a—sa+s)ujp—8,b-+6]:

_Z(a+9)

(@ro €

1. For t € [a — 0,a + 6], we will define E(t) by parallel transporting TZat

ViE =0,
(CL—l—(S) Z(a+9)

Z(at+0)|I

2. For t € [b—6,b+ 6], we will define E(t) similarly by

{vﬁE =0,
_ Z(b+s
B(b=9) = Z5s

Since E and ¥ are both parallel transported on the ¢ € [a—d, a+d] and satisfy E(a+6) L §(a+9) (due
to our assumption on Z), we must have E(t) L 4(¢) for all ¢ € [a — §,a + 0]. Similarly, E(t) L 4(t)
for all t € [b—6,b+ 6] (since E(b—9) L 4(b—9)).

Finally, let us define the function f : [a — d,a + §] U [b — J,b + d] by the relation

(t)—{t “+5||Z(a+5)|| t €la—94a+ 4],
B Zb—0)||, telb—0,b+0]
(note that f(a —9) = f(b+0) =0, fla+9) = || Z(a+ )|, f(b—29) =|Z(b—0)|). Using the

above ingredients, we will define the following vector field along v which can be thought of as a
“perturbation” of Z on 7|4 y:

Z(t), te(a+5,b—20),
Z(t)={ fE®), tela—ba+6Ub—3b+d,
0, tel0,a—9)U(b+9d,1].
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Note that Z is continuous and piecewise smooth for ¢ € [0, 1]; VﬁZ has a jump discontinuity at
t=a=+09,b+ 0. Moreover, Z L 7.
Let us consider the variation of (t) defined by

P(s,t) = exp, (SZ(t)).
Notice that ¢(s,t) satisfies the following properties:
1. ¢(0,t) = ~(t) and ¢(s,0) = ~(0), ¢(s,1) = (1) for all s (since Z(0) =0 and Z(1) = 0.
2. For any t € [0,1], the curves s — ¢(s,t) are geodesics; hence, the variation vector field

o

X = 2%
0s

satisfies Vx X = 0.

Therefore, applying the second variation formula for the length of the curves t — ¢4(t) = ¢(s,t), we
obtain

d?

1
= VXA /0 (IV52+12 = B3, 2.4, 2) ) at
1
=0 +/ (HV#ZHQ — R(%, 2,7, Z)) dt
a+60
= [ (1921 =R, Z4.2)) e+ [

b+o B B B
< [ (w52 - r6. 25, 2))
b—

b—o
(15212 = R(3. 2,4, 2)) at
+6

Remark. Even though we established the second variation formula in class for smooth variation
vector fields, it is also valid in the piecewise smooth setting. One way to see that (apart from going
through the details of the proof) is by applying the formula for a sequence of smooth approximations
of a given continuous and piecewise smooth variation vector field.

We will now compute the three integrals appearing in the right hand side above separately:

1. In the interval t € [a — &, a + 8], we have Z(t) = f(t)E(t). Since V4E = 0, we have V;Z(t) =
f'(t)E(t). Therefore, using the expression for f on [a — J,a + ], we calculate

a+d B B B
| (19321 = R, 2.4.2))

a+d
- [ (FOPIEOR - GOPRG.EAB)) d

=

L [ ([gphetas ] - [zt o] R .5, )
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a+é 1

([ e [ [ G ) )+ )
(5 [ e kG B @)zt + o)

Notice that, if ¢/ is an open neighborhood of y(a) in M with compact closure then, provided
0 is small enough so that 7|[a_57a+5] C U, we can bound

‘/:j[mrmﬂ)w?)dt\< max | K(II)] :S[ﬂrdt

20 peU JICT, M 20
20
= max |K(I)| - —.
pel,TICT, M 3

Therefore, as § — 0,

/_j (193217 - R, 2,4, 2)) dt = (5 + 0)) 1 2(a + ).

2. Arguing in exactly the same way for t € [b — §,b + J], we obtain

20

/bbj (HVA/ZH2 — R(¥, 2,4, Z)) dt = (i + 0(5)) 1Z(b — ).

3. In the interval t € [a + 6,b — 0], we have Z = Z. Therefore,

b—4d B B 5 b—0 B B
[ (193217 - R6.25.2)) e = | ((V:2.9:2) - R3.2.5.2)
a+0 a+6
b—9o d o~ =
_ / (5(2,932) ~(2.9:9:2) — R(3, 2,4, 2) ) di
a+9d
b—4d 5 5
= (2, V4Z) f;2+5—/ ) <<Z»VﬁVﬁZ>—R(’%Z,%Z)) di
a+

b—¢

— (292 - |

(<vﬁvﬁz, Z) + (R(%, 2)4, Z)) dt.
a+d

Using the fact that Z solves the Jacobi equation V;VsZ — R(¥, Z)¥ = 0, we therefore deduce
that

b—é
[ (19521 = R6. 24, 2)) e = 2.9:2)1225%

Returning to the expression for j—;f(qbs) and substituting the above relations for the three

s=0

integrals in the right hand side, we obtain:

d2

56| = (55 + 00120+ ) + (2,52 + (55 + 006)) 120 9)|

S=
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= =1 Z(a + ) ~ (Z(a +9), V3 2(a + )
+ o=l 20— 8)I + (Z(b — 8), V320 — 6)) + 0)(12(a+ 8)| + 11206 — 5) )

= {20 +0), 2(a + 8) ~ 269, 7(a +6))
1

T35

(2(b=6),2(b— 6) + 209,2(b — ) ) + O() (| Z(a + )| + 126 - 9)]I).
Using Taylor’s theorem (and the fact that Z(a) = 0), we can express as 6 — 0:
Z(a+68) = Z(a) + 06V4Z(a) + O(6%) = 6V Z(a) + O(6%)

and

Therefore,
<Z(a +68), Z(a+ ) — 26V Z(a + 5)> - <5vﬁ2(a) +0(8%),6VZ(a) + O(62) — 26V Z(a) + 0(52)>
= —52 <V:YZ((I>, V,YZ((Z» + 0(53)

Similarly,
Z(b—8) = —6V4Z(b) + O(8?),
ViZ(b—0)=V,Z()+ O(9)
and
<Z(b —8), Z(b—8) + 20V Z(b — 5)> = 62V Z(b), V5 Z(b)) + O(6%).
Therefore,
Tro)| = -2(IV: 2@ + IV Z0)F) + 0
ds? " ls=0 2\ 7 K '
Since V;Z(a),V5Z(b) # 0, we infer that, choosing ¢ > 0 sufficiently small, we have
d2
@g(ﬁss) 0 < 0.
Since L((¢;) = 0 (because 7 is a geodesic), this implies that ¢(¢s) < ¢(7y) for s # 0 small enough.

s=0
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