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11.1 Let (M, g) be a smooth Riemannian manifold.

(a) For any smooth function f : M → R, we will de�ne the Hessian Hess[f ] to be the
(0, 2)-tensor

Hess[f ]
.
= ∇df.

Show that, in any local coordinate system,

Hess[f ]ij = ∂i∂jf − Γk
ij∂kf.

Deduce thatHess(f) is a symmetric tensor. Show also that, for any p ∈ M andX ∈ TpM,

Hess[f ](X,X) =
d2

dt2
(
f ◦ γ(t)

)∣∣∣
t=0

, where γ is the geodesic γ(t) = expp(tX).

(b) For f : M → R, let c ∈ R be such that S = f−1({c}) is a smooth hypersurface of M and
df ̸= 0 on S. Show that the scalar second fundamental form b(·, ·) of S with respect to
the coorientation determined by gradf = df ♯ is given by

b(X, Y ) = −Hess[f ](X, Y )

∥gradf∥
for all X, Y ∈ Γ(M, S).

Solution. (a) Recall that, in any local coordinate system, the covariant derivative of an 1-form ω
can be expressed in terms of the Christo�el symbols by the relation

(∇iω)j = ∂iωj − Γk
ijωk.

Therefore, for ω = df , we have:

Hess[f ]ij
.
= (∇idf)j = ∂i(df)j − Γk

ij(df)k = ∂i∂jf − Γk
ij∂kf. (1)

The above expression is symmetric in i and j, since ∂i∂jf = ∂j∂if (f being a smooth func-
tion) and Γk

ij = Γk
ji (since the Levi-Civita connection is torsion-free). Therefore, Hess[f ](X, Y ) =

Hess[f ](Y,X) for any X, Y ∈ Γ(M).
Let p ∈ M and γ(t) = expp(tX) (so that γ(0) = p, γ̇(0) = X). Then, in any local coordinate

system around p, we calculate using the formula for the derivative of the composition of functions:

d2

dt2
(
f(γ(t))

)
=

d

dt

(
∂if(γ(t)) · γ̇i(t)

)
=

d

dt

(
∂if(γ(t))

)
· γ̇i(t) + ∂if(γ(t)) · γ̈i(t)

= ∂i∂jf(γ(t))γ̇
j(t)γ̇i(t) + ∂if(γ(t)) · γ̈i(t).

Since γ is a geodesic, it satis�es γ̈i(t) = −Γi
kl|γ(t)γ̇k(t)γ̇l(t). Substituting this for the last term in the

above relation, we obtain

d2

dt2
(
f(γ(t))

)
= ∂i∂jf(γ(t))γ̇

j(t)γ̇i(t)− Γi
kl|γ(t)γ̇k(t)γ̇l(t)∂if(γ(t)).
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Renamiing the summed indices in the second summand (so that (i, k, l) → (k, i, j)), we infer in view
of the formula (1):

d2

dt2
(
f(γ(t))

)
=

(
∂i∂jf(γ(t))− Γk

ij|γ(t)∂kf(γ(t))
)
γ̇i(t)γ̇j(t) = Hess[f ]|γ(t)

(
γ̇(t), γ̇(t)

)
.

Evaluating the above expression at t = 0, we infer the desired formula.

d2

dt2
(
f(γ(t))

)∣∣∣
t=0

= Hess[f ](X,X).

(b) For any point p ∈ S and any X ∈ TpM, we have:

⟨gradf,X⟩ = ⟨df ♯, X⟩ = gij(df
♯)iXj = gijg

ik∂kfX
j = δkj ∂kfX

j = ∂jfX
j = X(f).

Therefore, if X is tangent to S = f−1({c}), which is equivalent to the statement that X(f) = 0, we
must have ⟨gradf,X⟩ = 0; in particular, gradf |p ⊥ TpS.

Assuming that df ̸= 0 on S (and, hence, gradf |S ̸= 0), let us set n̂ to be the unit normal to S in
the direction of gradf |S, namely

n̂
.
=

gradf

∥gradf∥
.

For any p ∈ S and X, Y ∈ Γ(M, S), we have:

b(X, Y ) = −⟨∇X n̂, Y ⟩.

Therefore, we can calculate:

b(X, Y ) = −
〈
∇X

( gradf

∥gradf∥
)
, Y

〉
= −

〈∇Xgradf

∥gradf∥
+X

( 1

∥gradf∥
)
gradf, Y

〉
= − 1

∥gradf∥
⟨∇Xgradf, Y ⟩ −X

( 1

∥gradf∥
)
⟨gradf, Y ⟩.

The second term above vanishes (since gradf ⊥ TpS); for the �rst term, we will use the fact that ∇
commutes with the operator ♯ (since ∇g = 0), together with the trivial identity ⟨ω♯, XY ⟩ = ω(Y ) to
compute

⟨∇Xgradf, Y ⟩ = ⟨∇X(df
♯), Y ⟩ = ⟨(∇Xdf)

♯, Y ⟩ = ∇Xdf(Y ) = Hess[f ](X, Y )

(if you do not feel comfortable with manipulating the ♯ operator, you can perform the above cal-
culation directly in local coordinates). Therefore, returning to the previous computation, we infer
that

b(X, Y ) = −Hess[f ](X, Y )

∥gradf∥
.
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11.2 Let (M, g) be a smooth Riemannian manifold.

(a) The Einstein tensor G of (M, g) is the (0, 2)-tensor de�ned by

G = Ric− 1

2
Sg,

where S is the scalar curvature of g. Show that G is divergence free, i.e.

gab∇aGbc = 0.

(Hint: You might want to use the second Bianchi identity.) Deduce that if (M, g) satis�es

Ric = Λg

for some smooth function Λ : M → R and dimM ⩾ 3, then Λ = const on each connected
component of M (Hint: Show �rst that, in this case, G = Λ′g for some di�erent function
Λ′). A Riemannian manifold satisfying such a relation is called an Einstein manifold.

(b) Show that if (M, g) is a connected Einstein manifold of dimension dimM = 3, then
(M, g) has constant sectional curvature. (Hint: Exercise 9.1.c might be helpful.)

Remark. According to the theory of general relativity, a vacuum region of our spacetime
(i.e. where matter is absent) is modelled by a Lorentzian manifold (M, g) satisfying G = Λg,
where Λ is known as the cosmological constant. The above results indicate that non-trivial
vacuum spacetimes exist only when dimM ⩾ 4.

Solution. (a) Recall that the Ricci tensor is de�ned in terms of the Riemann curvature tensor by

Ricij = gabRaibj.

Note that the above relation is of the form Ric = trtr(g−1 ⊗ R) (where tr denotes an appropriate
contraction). Thus, in view of the facts that ∇g = 0 and ∇ commutes with contractions, we calculate
that ∇Ric satis�es

gki∇kRicij = gkigab∇kRaibj. (2)

Remark. Note that, in the above relation, ∇kRicij denotes (∇∂kRic)(∂i, ∂j) and similarly ∇kRaibj =
(∇∂kR)(∂a, ∂i, ∂b, ∂j). It is an easy exercise to verify (using the formula for the coordinate expression
of a covariant derivative of a tensor) that ∇kRaibj satis�es the same symmetries with respect to the
indices (a, i, b, j) as Raibj.

Using the 2nd Bianchi identity

∇kRaibj +∇jRaikb +∇bRaijk = 0

to substitute the term on the right hand side of (2), we obtain:

gki∇kRicij = −gkigab∇jRaikb − gkigab∇bRaijk. (3)
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Using the summetries of the Riemann curvature tensor (see also the remark above) and the fact that
∇ commutes with contractions and with g, we compute the �rst terms in the right hand side above

−gkigab∇jRaikb = gkigab∇jRaibk = ∇j

(
gkigabRaibk

)
= ∇jS.

Similarly, using the symmetries of R we compute that the second term in the right hand side of (3)
satis�es

−gkigab∇bRaijk = −gbagki∇bRiakj = gba∇bRicaj

where, in the last equality, we used the identity (2) with (b, i, a, k) in place of (k, a, i, b). Therefore,
returning to (3), we have

gki∇kRicij = ∂jS − gba∇bRicaj.

Note that (after relabelling the summing indices) the last term in the right hand side above is the
same as in the left hand side, so

2gki∇kRicij = ∇jS.

Using the trivial identity
∇jS = ∇k(g

kigijS) = gki∇k(gijS),

we thus obtain the required relation

gki∇k

(
2Ricij − Sgij

)
= 0. (4)

Suppose that (M, g) satis�es
Ric = Λg.

Then, we calculate that
S = gabRicab = Λgabgab = nΛ,

where n = dimM. Thus, substituting Ric and S in (4), we obtain

0 = gki∇k

(
Ricij −

1

2
Sgij

)
= gki∇k

(
Λgij −

n

2
Λgij

)
=

(
1− n

2

)
gkigij∇kΛ.

Thus, if n > 2, we infer that ∂jΛ = 0, i.e. Λ is locally constant on M.

(b) In the case when dimM = 3, we know from Exercise 9.1.c that the full Riemann tensor can
be expressed in terms of the Ricci tensor:

Rijkl = Ricik gjl − Ricil gjk + Ricjl gik − Ricjk gil −
1

2
S(gikgjl − gjkgil).

Since we assumed that Ric = Λg for some constant Λ (and, hence, S = gabRicab = 3Λ), we deduce
after substituting above:

Rijkl = Λgik gjl − Λgil gjk + Λgjl gik − Λgjk gil −
3

2
Λ(gikgjl − gjkgil)

=
1

2
Λ(gikgjl − gjkgil).

Therefore, g has constant sectional curvature equal to 1
2
Λ.
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11.3 Let (M, g) be a smooth Riemannian manifold.

(a) A 2-dimensional surface S ⊂ M is called ruled if, for every p ∈ M, there exists a curve
γ : (−δ, δ) → M with γ(0) = p, γ̇(0) ̸= 0 which is a geodesic of (M, g) and lies entirely
inside S. Show that, in this case,

K̄p ⩽ K[TpS] for all p ∈ S,

where K̄p is the sectional curvature of S with respect to the induced metric ḡ, whileK[TpS]
is the sectional curvature of the plane TpS ⊂ TpM with respect to the ambient metric g.
This is known as Synge's inequality.

(b) Let q be a point in M and let Ω ⊂ TqM be a convex open neighborhood of 0 such that
expq is a di�eomorphism when restricted on Ω. Let S ⊂ M be the surface de�ned by
S = expq(Ω ∩ V ), where V is a 2-dimensional subspace of TqM. Show that S is a ruled
surface. Moreover, show that at the point q:

K̄q = K[TqS].

Solution. (a) Let B(·, ·) be the second fundamental form of S ⊂ M. As we have shown in class, if
γ : [a, b] → S is a geodesic in S (i.e. satis�es ∇̄γ̇ γ̇ = 0), its acceleration in M satis�es

∇γ̇ γ̇ = B(γ̇, γ̇).

If S is a ruled surface, then, for every p ∈ S, there exists a geodesic γ of M passing through p which
lies entirely in S (hence it is also a geodesic of S, since ∇̄γ̇ γ̇ = π⊤(∇γ̇ γ̇) = 0; thus, there exists a
v ∈ TpS (with v = γ̇) such that

B(v, v) = 0.

Let us choose for every point p ∈ S an orthonormal frame {e1, e2} for TpS such that e1 = v. Using the
Gauss equation, we showed in class that, for the 2-plane Π = TpS ⊂ TpM, the sectional curvatures
of (M, g) and (S, ḡ) at p are related by

K̄p = Kp(Π) +
⟨B(e1, e1), B(e2, e2)⟩ − ∥B(e1, e2)∥2

∥e1∥2∥e2∥2 − ⟨e1, e2⟩2
.

Since {e1, e2} is orthonormal and B(e1, e1) = 0, we infer that

K̄p = Kp(Π)− ∥B(e1, e2)∥2 ⩽ Kp(Π).

(b) Let S = expq(V ∩ Ω). Since expq : Ω ⊂ TqM → U = expq(Ω) ⊂ M is a di�eomorphism, S is
a smooth 2-dimensional surface in M; the map Φ = expq |V ∩Ω : V ∩ Ω → S then de�nes a smooth
parametrization of S (and Φ−1 de�nes a coordinate chart, once we identify V with R2). Every p ∈ S
is of the form p = expq(v) for some v ∈ V ∩ Ω; in this case, the curve t[0, 1] → γ(t) = expq(tv) is
a geodesic of M that lies entirely in S and passes through p (since Ω was assumed to be a convex
neighborhood of 0, t · v ∈ Ω∩V for t ∈ [0, 1] and, thus, expq(tv) ∈ expq(V ∩Ω) = S for all t ∈ [0, 1]).
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Therefore, S is a ruled surface. Moreover, at the point q, every direction v ∈ TqS = V is a direction
through which passes a geodesic of M lying entirely in S. To see this, note that, since Ω is an open
neighborhood of 0 ∈ TqM, for any v ∈ V there exists a λv > 0 such that λvv ∈ Ω ∩ V ; in this case,
the curve t ∈ [0, λv] → γ(t) = expq(tv) is a geodesic of M that lies entirely in S = expq(V ∩ Ω) and
satis�es γ(0) = q, γ̇(0) = v. Therefore, as we explained in the previous part of this exersice, the
second fundamental form B(·, ·) of S satis�es at q:

B(v, v) = 0 for all v ∈ TqS = V.

Since B(·, ·) is symmetric and bilinear, this implies that

B(v, w) = 0 for all v, w ∈ TqS = V.

Thus, if {e1, e2} is a basis for TqS = V , we have

K̄q = Kq(TqS) +
⟨B(e1, e1), B(e2, e2)⟩ − ∥B(e1, e2)∥2

∥e1∥2∥e2∥2 − ⟨e1, e2⟩2
= Kq(TqS).

11.4 (a) Let S ⊂ (R3, gE) be a smooth surface which is contained inside the ball

BR =
{
x ∈ R

3 : ∥x∥ ⩽ R
}

and such that there exists a point z ∈ S with z ∈ ∂BR (i.e. ∥z∥ = R). Deduce that S and
SR = ∂BR have the same tangent plane at z. Show that the sectional curvature K of S
satis�es at the point z

Kz ⩾
1

R2
.

Hint: It might be useful to compare the sectional curvatures of S and SR at z by expressing
both surfaces locally as graphs of functions de�ned over their common tangent plane TzS
and use Exercise 9.1.

(*b) A surface S ⊂ R
3 is called minimal if it has vanishing mean curvature H (such a surface

is a stationary point of the total surface functional A[S] =
�
S
dḡ, hence the name). Show

that a minimal surface satis�es K ⩽ 0. Deduce that there is no compact minimal surface
in R3. (Hint: For a compact minimal surface S, start from a sphere completely surrounding
S and decrease its radius until you end up with a sphere both containing S and touching
S at a point z.)

Solution. (a) Let us consider the polar coordinate system (r, θ, ϕ) on R3 and let us assume, without
loss of generality, that the point z does not lie in a region where (r, θ, ϕ) does not degenerate (i.e. at
θ = 0, π); we can always achieve that by rotating, if necessary, the coordinate system. In this case,
the tangent plane TzSR of the sphere SR = {r = R} at the point z is spanned by the coordinate
vector �elds ∂θ|z, ∂ϕ|z. In order to show that TzS = TzSR, it su�ces to show that, for any curve
t → γ(t) inside S with γ(0) = z, γ̇(0) ∈ span{∂θ|z, ∂ϕ|z}, i.e. that

γ̇r(0) = 0 ⇔ d

dt
r(γ(t))

∣∣
t=0

= 0.
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Since S ⊂ {r ⩽ R} and z ∈ {r = R}, we infer that, for any curve γ in S as above, we have r(γ(t)) ⩽ R
for all t and r(γ(0)) = R; therefore, d

dt
r(γ(t))|t=0 = 0. Thus, we have shown that TzS = TzSR.

Let us consider a Cartesian coordinate system (x1, x2, x3) on R
3 such that z lies at the center

(0, 0, 0), the 2-plane TzS = TzSR is the coordinate plane {x3 = 0} (hence spanned by ∂1|z, ∂2|z)
and the vector ∂3|z points in the direction of ∂r. Since the surfaces S and SR are smooth and
∂3 is transversal to TzS, TzSR at z, it will also be transversal to to TpS, TqSR for p ∈ S and
q ∈ SR close enough to z. Therefore, we can express both surfaces as graphs of functions over
the (x1, x2) coordinate plane in a small neighborhood around z, i.e. there exist smooth functions
F, FR : Bδ(0) ⊂ R

2 → R (for some δ > 0 small enough) and open neighborhoods U ⊂ S, V ⊂ SR of
z, such that:

S ∩ U =
{
x3 = F (x1, x2), (x1, x2) ∈ Bδ(0)

}
, SR ∩ V =

{
x3 = FR(x

1, x2), (x1, x2) ∈ Bδ(0)
}
.

Note that since z = (0, 0, 0) belongs to both surfaces, we have

F (0, 0) = 0 = FR(0, 0).

Moreover, since the plane {x3 = 0} is tangent to S, SR at z, we also have

∂iF (0, 0) = 0 = ∂iFR(0, 0), i = 1, 2.

Finally, note that, since S lies in the interior of the ball SR and the coordinate vector ∂3|z points in
the direction of ∂r, the functions F and FR satisfy:

F (x1, x2) ⩽ FR(x1, x2) ⩽ 0

(note that FR(x1, x2) ⩽ 0 because the ball SR lies on one side of the hyperplane TzSR = {x3 = 0},
namely in the half space {x3 ⩽ 0} ). The above conditions imply that the 2× 2 symmetric matrices
[∂i∂jF ](0, 0) and [∂i∂jFR](0, 0) satisfy

[∂i∂jF ](0, 0) ⩽ [∂i∂jF ]R(0, 0) ⩽ 0 (5)

(recall that two symmetric n × n matrices A,B satisfy A ⩽ B if xTAx ⩽ xTBx for any vector x).
Note also that

Using the last relation established in the solution of Exercise 9.1, we can compute the Riemann
curvature tensors of S and SR (equipped with the corresponding induced metrics ḡ and ḡR) in the
(x1, x2) coordinate systems by the formulas

(Rḡ)ijkl
∂i∂kF · ∂j∂lF − ∂i∂lF · ∂j∂kF

1 + |dF |2

and

(RḡR)ijkl
∂i∂kFR · ∂j∂lFR − ∂i∂lFR · ∂j∂kFR

1 + |dFR|2

Therefore, using the formula de�ning the sectional curvature, we can evaluate at (x1, x2) = (0, 0)
(where dF = dFR = 0 and ḡij|(0,0) = (ḡR)ij|(0,0) = δij:

Kḡ|z = det
(
[∂i∂jF ](0, 0)

)
, KḡR |z = det

(
[∂i∂jFR](0, 0)

)
.
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In view of the relation (5) between the matrices [∂i∂jF ](0, 0) and [∂i∂jFR](0, 0), we infer that

Kḡ|z ⩾ KḡR |z.

Since (SR, ḡR) is the round sphere of radius R, we have KḡR |z = 1
R2 , hence

Kḡ|z ⩾
1

R2
.

(b) Let p be any point on S ⊂ R
3 and {e1, e2} be an orthonormal base of TpS. Let b be the scalar

second fundamental form of S (with respect to a �xed unit normal n̂ to S) and let us de�ne the
symmetric 2× 2 matrix

B =

(
b(e1, e1) b(e1, e2)
b(e2, e1) b(e2, e2)

)
.

The sectional curvature K|p of S equipped with the induced metric satis�es (in view of the Gauss
equation and the fact that the Riemann curvature tensor of (R3, gE) vanishes identically)

K|p = b(e1, e1)b(e2, e2)−
(
b(e1, e2)

)2
= detB,

while the mean curvature H|p was de�ned so that

H|p = b(e1, e1) + b(e2, e2) = trB.

Notice that B is diagonalizable with real eigenvalues (since it is symmetric), so if λ1, λ2 ∈ R are its
eigenvalues, we have trB = λ1 + λ2, detB = λ1λ2. From this it readily follows that if trB = 0, then
detB ⩽ 0. In particular, if S is a minimal surface, then K|p ⩽ 0 for all p ∈ S.

We will show that there is no compact minimal surface in R3 by contradiction: Assume that such
a minimal surface S existed. Since S is compact it is also bounded. Let

R = min{ρ > 0 : S ⊂ Bρ(0)},

that is to say, BR(0) is a closed ball of minmal radius which contains S entirely. Let us set SR =
∂BR(0) = {r = R}. Note that there exists a point z ∈ SR such that z ∈ S: If this is not the case,
i.e. if S ∩ SR = ∅, then, due to the compactness of S, we must have maxS r < R; in this case, there
would exist a δ > 0 such that S ⊂ {r ⩽ R− δ}, thus violating the assumption that R is the minimal
value with this property. From part (a) of this exercise, it would then follow that

K|z ⩾
1

R2
,

which contradicts the fact that K ⩽ 0 everywhere on a minimal surface.

* 11.5 Let γ : [0, 1] → M be a geodesic of (M, g). Assume that there exist points 0 < a < b < 1 and
a vector �eld Z along γ with Z ⊥ γ̇ satisfying the Jacobi equation

∇γ̇∇γ̇Z −R(γ̇, Z)γ̇ = 0
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and such that
Z(a) = Z(b) = 0

with Z not identically 0 on [a, b]. Show that γ cannot be length minimizing among all curves
connecting γ(0) to γ(1). (Hint: You have to construct a variation ϕs of ϕ0 = γ �xing the
endpoints of γ such that d2

ds2
(ℓ(ϕs))|s=0 < 0.To this end, consider �rst the variation determined

by a variation vector �eld which is equal to Z in [a, b] and 0 otherwise, and then consider small
perturbations of this vector �eld around t = a, b .)

Solution. First of all, since Z is not identically 0 along γ, we must have ∇γ̇Z(a) ̸= 0 and ∇γ̇Z(b) ̸= 0
(this can be seen via a contradiction argument: If ∇γ̇Z(a) = 0, then Z would satisfy the same initial
coditions at t = a as the zero vector �eld; since the Jacobi equation is a linear second order ODE,
the uniqueness property of solutions to the corresponding initial value problem at t = 1 would imply
that Z ≡ 0, which is a contradiction; similarly at t = b). Therefore, for δ > 0 su�ciently small (to be
determined more precisely later), we have Z(a+ δ) ̸= 0 and Z(b− δ) ̸= 0. Let us de�ne the following
auxiliary unit vector �eld E on γ|[a−δ,a+δ]∪[b−δ,b+δ]:

1. For t ∈ [a− δ, a+ δ], we will de�ne E(t) by parallel transporting Z(a+δ)
∥Z(a+δ)∥ , i.e.{

∇γ̇E = 0,

E(a+ δ) = Z(a+δ)
∥Z(a+δ)∥ .

2. For t ∈ [b− δ, b+ δ], we will de�ne E(t) similarly by{
∇γ̇E = 0,

E(b− δ) = Z(b+δ)
∥Z(b+δ)∥ .

Since E and γ̇ are both parallel transported on the t ∈ [a−δ, a+δ] and satisfy E(a+δ) ⊥ γ̇(a+δ) (due
to our assumption on Z), we must have E(t) ⊥ γ̇(t) for all t ∈ [a− δ, a + δ]. Similarly, E(t) ⊥ γ̇(t)
for all t ∈ [b− δ, b+ δ] (since E(b− δ) ⊥ γ̇(b− δ)).

Finally, let us de�ne the function f : [a− δ, a+ δ] ∪ [b− δ, b+ δ] by the relation

f(t) =

{
t−a+δ

2δ
∥Z(a+ δ)∥, t ∈ [a− δ, a+ δ],

b+δ−t
2δ

∥Z(b− δ)∥, t ∈ [b− δ, b+ δ]

(note that f(a − δ) = f(b + δ) = 0, f(a + δ) = ∥Z(a + δ)∥, f(b − δ) = ∥Z(b − δ)∥). Using the
above ingredients, we will de�ne the following vector �eld along γ which can be thought of as a
�perturbation� of Z on γ|[a,b]:

Z̃(t) =


Z(t), t ∈ (a+ δ, b− δ),

f(t)E(t), t ∈ [a− δ, a+ δ] ∪ [b− δ, b+ δ],

0, t ∈ [0, a− δ) ∪ (b+ δ, 1].
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Note that Z̃ is continuous and piecewise smooth for t ∈ [0, 1]; ∇γ̇Z̃ has a jump discontinuity at
t = a± δ, b± δ. Moreover, Z̃ ⊥ γ̇.

Let us consider the variation of γ(t) de�ned by

ϕ(s, t) = expγ(t)

(
sZ̃(t)

)
.

Notice that ϕ(s, t) satis�es the following properties:

1. ϕ(0, t) = γ(t) and ϕ(s, 0) = γ(0), ϕ(s, 1) = γ(1) for all s (since Z̃(0) = 0 and Z̃(1) = 0.

2. For any t ∈ [0, 1], the curves s → ϕ(s, t) are geodesics; hence, the variation vector �eld

X =
∂ϕ

∂s

satis�es ∇XX = 0.

Therefore, applying the second variation formula for the length of the curves t → ϕs(t) = ϕ(s, t), we
obtain

d2

ds2
ℓ(ϕs)

∣∣∣
s=0

= ⟨∇XX, γ̇⟩
∣∣t=1

t=0
+

� 1

0

(
∥∇γ̇Z̃

⊥∥2 −R(γ̇, Z̃, γ̇, Z̃)
)
dt

= 0 +

� 1

0

(
∥∇γ̇Z̃∥2 −R(γ̇, Z̃, γ̇, Z̃)

)
dt

=

� a+δ

a−δ

(
∥∇γ̇Z̃∥2 −R(γ̇, Z̃, γ̇, Z̃)

)
dt+

� b−δ

a+δ

(
∥∇γ̇Z̃∥2 −R(γ̇, Z̃, γ̇, Z̃)

)
dt

+

� b+δ

b−δ

(
∥∇γ̇Z̃∥2 −R(γ̇, Z̃, γ̇, Z̃)

)
dt.

Remark. Even though we established the second variation formula in class for smooth variation
vector �elds, it is also valid in the piecewise smooth setting. One way to see that (apart from going
through the details of the proof) is by applying the formula for a sequence of smooth approximations
of a given continuous and piecewise smooth variation vector �eld.

We will now compute the three integrals appearing in the right hand side above separately:

1. In the interval t ∈ [a− δ, a+ δ], we have Z̃(t) = f(t)E(t). Since ∇γ̇E = 0, we have ∇γ̇Z̃(t) =
f ′(t)E(t). Therefore, using the expression for f on [a− δ, a+ δ], we calculate

� a+δ

a−δ

(
∥∇γ̇Z̃∥2 −R(γ̇, Z̃, γ̇, Z̃)

)
dt

=

� a+δ

a−δ

(
(f ′(t))2∥E(t)∥2 − (f(t))2R(γ̇, E, γ̇, E)

)
dt

∥E∥=1
=

� a+δ

a−δ

([ 1

2δ
∥Z(a+ δ)∥

]2
−
[t− a+ δ

2δ
∥Z(a+ δ)∥

]2
R(γ̇, E, γ̇, E)

)
dt
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=
(� a+δ

a−δ

1

4δ2
dt−

� a+δ

a−δ

[t− a+ δ

2δ

]2
K(γ̇, E)∥γ̇∥2

)
dt
)
∥Z(a+ δ)∥2

=
( 1

2δ
−
� a+δ

a−δ

[t− a+ δ

2δ

]2
K(γ̇, E)∥γ̇∥2

)
dt
)
∥Z(a+ δ)∥2.

Notice that, if U is an open neighborhood of γ(a) in M with compact closure then, provided
δ is small enough so that γ|[a−δ,a+δ] ⊂ U , we can bound∣∣∣� a+δ

a−δ

[t− a+ δ

2δ

]2
Kγ̇,E)∥γ̇∥2

)
dt
∣∣∣ ⩽ max

p∈Ū ,Π⊂TpM
|K(Π)|

� a+δ

a−δ

[t− a+ δ

2δ

]2
dt

= max
p∈Ū ,Π⊂TpM

|K(Π)| · 2δ
3
.

Therefore, as δ → 0,

� a+δ

a−δ

(
∥∇γ̇Z̃∥2 −R(γ̇, Z̃, γ̇, Z̃)

)
dt =

( 1

2δ
+O(δ)

)
∥Z(a+ δ)∥2.

2. Arguing in exactly the same way for t ∈ [b− δ, b+ δ], we obtain

� b+δ

b−δ

(
∥∇γ̇Z̃∥2 −R(γ̇, Z̃, γ̇, Z̃)

)
dt =

( 1

2δ
+O(δ)

)
∥Z(b− δ)∥2.

3. In the interval t ∈ [a+ δ, b− δ], we have Z̃ = Z. Therefore,

� b−δ

a+δ

(
∥∇γ̇Z̃∥2 −R(γ̇, Z̃, γ̇, Z̃)

)
dt =

� b−δ

a+δ

(
⟨∇γ̇Z,∇γ̇Z⟩ −R(γ̇, Z̃, γ̇, Z̃)

)
dt

=

� b−δ

a+δ

( d

dt
⟨Z,∇γ̇Z⟩ − ⟨Z,∇γ̇∇γ̇Z⟩ −R(γ̇, Z̃, γ̇, Z̃)

)
dt

= ⟨Z,∇γ̇Z⟩|b−δ
t=a+δ −

� b−δ

a+δ

(
⟨Z,∇γ̇∇γ̇Z⟩ −R(γ̇, Z̃, γ̇, Z̃)

)
dt

= ⟨Z,∇γ̇Z⟩|b−δ
t=a+δ −

� b−δ

a+δ

(
⟨∇γ̇∇γ̇Z,Z⟩+ ⟨R(γ̇, Z̃)γ̇, Z̃⟩

)
dt.

Using the fact that Z solves the Jacobi equation ∇γ̇∇γ̇Z −R(γ̇, Z)γ̇ = 0, we therefore deduce
that � b−δ

a+δ

(
∥∇γ̇Z̃∥2 −R(γ̇, Z̃, γ̇, Z̃)

)
dt = ⟨Z,∇γ̇Z⟩|t=b−δ

t=a+δ.

Returning to the expression for d2

ds2
ℓ(ϕs)

∣∣∣
s=0

and substituting the above relations for the three

integrals in the right hand side, we obtain:

d2

ds2
ℓ(ϕs)

∣∣∣
s=0

=
( 1

2δ
+O(δ)

)
∥Z(a+ δ)∥2 + ⟨Z,∇γ̇Z⟩|t=b−δ

t=a+δ +
( 1

2δ
+O(δ)

)
∥Z(b− δ)∥2
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=
1

2δ
∥Z(a+ δ)∥2 − ⟨Z(a+ δ),∇γ̇Z(a+ δ)⟩

+
1

2δ
∥Z(b− δ)∥2 + ⟨Z(b− δ),∇γ̇Z(b− δ)⟩+O(δ)

(
∥Z(a+ δ)∥2 + ∥Z(b− δ)∥2

)
=

1

2δ

〈
Z(a+ δ), Z(a+ δ)− 2δ∇γ̇Z(a+ δ)

〉
+

1

2δ

〈
Z(b− δ), Z(b− δ) + 2δ∇γ̇Z(b− δ)

〉
+O(δ)

(
∥Z(a+ δ)∥2 + ∥Z(b− δ)∥2

)
.

Using Taylor's theorem (and the fact that Z(a) = 0), we can express as δ → 0:

Z(a+ δ) = Z(a) + δ∇γ̇Z(a) +O(δ2) = δ∇γ̇Z(a) +O(δ2)

and
∇γ̇Z(a+ δ) = ∇γ̇Z(a) +O(δ).

Therefore,〈
Z(a+ δ), Z(a+ δ)− 2δ∇γ̇Z(a+ δ)

〉
=

〈
δ∇γ̇Z(a) +O(δ2), δ∇γ̇Z(a) +O(δ2)− 2δ∇γ̇Z(a) +O(δ2)

〉
= −δ2⟨∇γ̇Z(a),∇γ̇Z(a)⟩+O(δ3).

Similarly,
Z(b− δ) = −δ∇γ̇Z(b) +O(δ2),

∇γ̇Z(b− δ) = ∇γ̇Z(b) +O(δ)

and 〈
Z(b− δ), Z(b− δ) + 2δ∇γ̇Z(b− δ)

〉
= −δ2⟨∇γ̇Z(b),∇γ̇Z(b)⟩+O(δ3).

Therefore,
d2

ds2
ℓ(ϕs)

∣∣∣
s=0

= −δ

2

(
∥∇γ̇Z(a)∥2 + ∥∇γ̇Z(b)∥2

)
+O(δ2).

Since ∇γ̇Z(a),∇γ̇Z(b) ̸= 0, we infer that, choosing δ > 0 su�ciently small, we have

d2

ds2
ℓ(ϕs)

∣∣∣
s=0

< 0.

Since d
ds
ℓ(ϕs)

∣∣∣
s=0

= 0 (because γ is a geodesic), this implies that ℓ(ϕs) < ℓ(γ) for s ̸= 0 small enough.
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